\square Code No. : 136030
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (I.T.) II Year I-Semester Backlog Examinations, December-2017

Discrete Mathematics

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10×2 = 20 Marks)

1. Define Tautology, Contradiction and Contingency.
2. Write the Converse and Contrapositive of "If it snows tonight then I will stay at home".
3. Compute 3071001 mod 102.
4. If $a \mid b$ then prove that $a \mid(b+c)$, where a, b and c are integers.
5. Explain Fibonacci relation.
6. Determine the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$?
7. Define equivalence order relation and give an example of it.
8. Define Transitive closure of a relation.
9. Explain Eulerian graph with example.
10. State the First theorem of graph theory.

Part-B $(5 \times 10=50$ Marks $)$
11. a) Show that $([(p \Lambda \sim q) \rightarrow r] \rightarrow[p \rightarrow(q \vee r)])$ is a tautology.
b) What is meant by proof by contradiction? Use it to prove $\sqrt{5}$ is irrational.
12. a) Let p be a prime which does not divide the integer a, then show that $a^{p-1}=1(\bmod p)$.
b) Find the greatest common divisor of 1071 and 462 and express it as the linear combination of these numbers.
13. a) State and prove the generalized pigeon-hole priniciple.
b) Find all the solutions of the Recurrence Relation $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$.
14. a) Draw the Hasse diagram for the divisibility on the set $\{1,2,3,4,6,8,12\}$. Also determine the maximal and minimal elements of it.
b) Show that the relation $R=\{(a, b) / a \equiv b(\bmod m)\}$ is an equivalence Relation on the set of integers, where m is a positive integer greater than 1 .
15. a) State and prove Euler's Formula for planar graphs.
b) Define the chromatic number of a graph and what is the chromatic number of k_{n}.
16. a) Use mathematical induction to show that $1+2+2^{2}+\ldots \ldots \ldots .+2^{n}=2^{n+1}-1$ for all non-negative integers ' n '.
b) If $a=b q+r$ then prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$, where $\mathrm{a}, \mathrm{b}, \mathrm{q} \& \mathrm{r}$ are integers.
17. Answer any two of the following:
a) How many solutions are there to the equation $x_{1}+x_{2}+\cdots+x_{5}=21$ where x_{i} is a non- negative integer and $i=1,2,3,4,5$ such that $x_{i} \geq 2$ for all i.
b) Define greatest and least elements of a poset. Is there a greatest and least element in the poset $\left(Z^{+}, /\right)$?
c) Use a depth first search to find a spanning tree for the graph given below:

$\cos \cos \cos 808080$

